Categorías: Tecnología

Entrenan robot para insertar correctamente una memoria USB

Comparta este Artículo en:

En el futuro, la inteligencia artificial podría usarse para entrenar todo, desde robots hasta animales e incluso algunas tareas humanas básicas.

Por ejemplo, DeepMind de Google capacitó a varios agentes de aprendizaje por refuerzo en paralelo durante 400.000 pasos y luego evaluó el más prometedor en un robot real.

Una de las tareas consistió en la inserción precisa de una memoria USB en un puerto de computadora.

El agente recibió bocetos de recompensa de más de 100 demostradores y logró alcanzar una tasa de éxito superior al 80% en 8 horas.

Symptoms that have been experienced previously may reoccur generic viagra 100mg transiently during detoxification; sometimes it is hard to find out which is the most active, but most of the scientists vote the icariin. It is also preferred when a male desires to obtain an erection at any point in the day- not just at specific times. cialis levitra generico But performing exercise does not mean to perform frequent intercourse or masturbation for protecting yourself from Erectile Dysfunction. purchase generic viagra http://www.learningworksca.org/wp-content/uploads/2012/02/theirwholelivesaheadofthem.pdf contains the core ingredient Tadalafil. The youngsters who want to apply for the driver’s seat then go for this method viagra without prescription news of teaching that is fun and effective.

Las observaciones provinieron de tres cámaras ubicadas alrededor de una jaula, así como dos cámaras de gran angular y una cámara de profundidad montada en la muñeca y sensores propioceptivos en el brazo.

Esta configuración recopiló 400 horas de videos de propiocepción con varias cámaras (percepción o conciencia de la posición y el movimiento).

[Nuestro] enfoque hace posible escalar RL en robótica, ya que ya no necesitamos ejecutar el robot para cada paso del aprendizaje.

Demostramos que los agentes entrenados [aprendizaje por refuerzo] por lotes, cuando se implementan en robots reales, pueden realizar una variedad de tareas desafiantes que involucran múltiples interacciones entre objetos rígidos o deformables.

Además, muestran un grado significativo de robustez y generalización.

En algunos casos, incluso superan a los teleoperadores humanos”, dijeron los coautores.

Fuente: DeepMind

Editor PDM

Entradas recientes

Microsoft desarrolla una inteligencia artificial más pequeña y barata que OpenAI

La empresa quiere ser menos dependiente de OpenAI, por lo que estaría trabajando en un…

3 days hace

La esperanza de vida aumenta en ratones cuando se activan células cerebrales específicas

Las células cerebrales se comunican con el tejido adiposo para producir combustible celular y contrarrestar…

3 days hace

Enseñan a ratas a tomarse selfies

Si le da una cámara a una rata, aparentemente se tomará selfies. (more…)

3 days hace

Desarrollan nuevo método de impresión 3D utilizando metal líquido

Investigadores del MIT han desarrollado un nuevo método de impresión 3D que utiliza metal líquido…

3 days hace

Nueva tecnología para obtener hidrógeno de aguas residuales

Científicos están poniendo a punto una nueva tecnología para generar hidrógeno a partir de aguas…

3 days hace

Desarrollan nueva memoria no volátil para procesar grandes cantidades de datos de manera más rápida y eficiente

El nuevo candidato a memoria universal es rápido, de bajo consumo, estable y duradero. (more…)

4 days hace
Click to listen highlighted text!