Miembros del grupo de Física y Cristalografía de los Materiales de la Universitat Rovira i Virgili (URV), en España, han creado un sensor fotónico ultrasensible que puede detectar concentraciones de sustancias contaminantes en el agua en volúmenes micro.
Se ha fabricado sobre una superficie transparente (de vidrio) y se basa en la excitación infrarroja de polaritones plasmónicos superficiales, un tipo de onda electromagnética que permite detectar pequeñas concentraciones de sustancias contaminantes en el agua.
El sensor aprovecha la existencia de resonancias moleculares en la región espectral infrarroja para diferenciar sustancias contaminantes del agua.
Es decir, la luz infrarroja utilizada en este trabajo es absorbida por las moléculas de la sustancia con la que entra en contacto.
Una misma sustancia puede absorber radiación con longitudes de onda diversas (de acuerdo con su composición molecular) y cada porción del espectro que se absorbe se debe a una composición molecular específica.
El hecho de que diferentes sustancias tengan resonancias diferentes sirve para detectar concentraciones de sustancias determinadas a través de diferentes técnicas, como la del sensor que ahora han desarrollado.
En el trabajo, cuyos resultados se acaban de publicar en la revista Optics Letters, se demuestra experimentalmente, por ejemplo, la detección de un mínimo de 0,02 % de volumen de alcohol en agua pura.
Este es uno de los resultados del prototipo actual, pero las simulaciones que ha hecho el grupo de investigación Física y Cristalografía de Materiales de la URV prevén que la sensibilidad del sensor se pueda aumentar todavía más.
Este nivel de precisión en la detección óptica de contaminantes en el agua sobre una superficie de dimensiones milimétricas puede tener un gran interés tecnológico puesto que este sensor, conectado mediante fibras ópticas, es capaz de incorporarse en cualquier elemento de vidrio, como por ejemplo probetas, puertas de microscopio o, incluso sobre pantallas de smartphones, ya que el sensor químico está diseñado en una plataforma transparente.
La novedad del trabajo recae tanto en el mecanismo de detección como en su integrabilidad.
La tecnología de fabricación consta de escritura láser 3D de femtosegundos (0,000 000 000 000 001 segundos) sobre vidrio para realizar los elementos que guían la luz, las guías de onda, junto con la conexión de fibras ópticas comerciales, un hecho que facilita que esta tecnología pueda ser trasladada a escala industrial.
El efecto plasmónico se consigue depositando una capa nanométrica de un material transparente conductor sobre la superficie del vidrio.
Above all else, make sure you commit to the promises you make in a privacy statement- or there might even be legal troubles cialis 20mg ahead for your website. Erectile dysfunction is a disorder which is faced only by men around cheap pfizer viagra the globe. A brief list of xenoestrogen sources would include: Pesticides Herbicides Plastic wrappings Plastic drinking bottles Meat from animals raised on hormone-rich food Detergents Pollution Doctor Allan Lieberman, from the Center for Occupational & Environmental Medicine, stated a couple of years ago that the accumulation of fatty plaque inside the blood vessels throughout the male body. buy cialis http://amerikabulteni.com/2011/09/21/legendary-rock-group-r-e-m-have-announced-the-band-is-breaking-up/ This drug has been a big success as is evident viagra discount prices from the name.
El sensor plasmónico que ahora se ha diseñado es una evolución del que había patentado el mismo grupo de investigación previamente y que se ha demostrado que se puede utilizar en ambientes extremos, como aviones, o entornos abrasivos sometidos a la erosión atmosférica.
Este sensor no tiene incorporada la capa nanométrica y se basa en un mecanismo físico diferente, pero tiene la ventaja de ser más robusto y, por lo tanto, puede soportar ambientes erosivos porque el vidrio tiene la misma dureza que las partículas del aire.
La principal diferencia entre el agua líquida y la sólida es que tienen una estructura molecular diferente.
Este cambio de estructura molecular, ordenada en el caso de agua sólida, es la que produce un cambio significativo en sus propiedades físicas, en concreto, en las propiedades ópticas (índice de refracción y su absorción).
Como el sensor que han patentado es muy sensible a los cambios en estas propiedades del agua, es capaz de detectar instantáneamente la formación de hielo sobre su superficie.
Además, como el índice de refracción varía mucho también con la temperatura, se puede monitorear la temperatura del agua desde -40 ºC hasta +40 ºC.
El dsipositivo es muy versátil y el hecho de estar diseñado para ser conectado con fibra lo hace muy interesante para aplicaciones aeronáuticas, donde el peso tiene que ser mínimo y, como las fibras ópticas son mucho más ligeras que los cables eléctricos, son más deseables para ser integradas en un avión.
El sensor de hielo ha sido validado en un túnel de hielo, en el centro IFAM-Fraunhofer de Alemania, donde ha sido sometido a condiciones reales de formación de hielo en vuelo a velocidades de hasta 342 km/h.
El comportamiento del sensor ha sido muy satisfactorio porque se han detectado diferentes tipos de hielo con una rapidez mayor que la de cualquier otra tecnología de detección de hielo para aviones existente.
En estos momentos las instituciones que han participado en el proyecto JEDI-ACE (Japanese-European De-Icing Aircraft Collaborative Exploration –un programa de I+D entre Europa y Japón que estudia cómo evitar, alertar y eliminar el hielo que se acumula en zonas del avión–, trabajan en solicitar un nuevo proyecto donde el sensor tendría un papel central y sería testado en aviones reales.
Fuente: Noticias de la Ciencia