Lograr que un robot ejecute tareas para las que ni siquiera ha sido programado: no estamos tan lejos de lograrlo.
DeepMind, la compañía de IA bajo el paraguas de Google, quiere demostrar que esto es posible y RoboCat es su nuevo “agente de IA automejorado” para probarlo.
Se trata de un nuevo brazo robótico capaz de aprender por sí mismo nuevas tareas de forma mucho más rápida y con el propósito de reducir la necesidad de supervisión por parte de equipos humanos.
RoboCat (Robot – Gato) es el nombre del propio robot que ejecuta las novedades del modelo, pero el corazón de este proyecto es Gato.
Este es un modelo multimodal capaz de procesar lenguaje, imágenes y acciones en distintos entornos (simulados o físicos).
Si bien esta es la base para que el robot funcione, en el caso de RoboCat se combinaron los datos de este conjunto (Gato) con otro gran conjunto de datos de entrenamiento.
El objetivo era comprobar hasta qué punto el robot podía mejorar por sí mismo su desempeño añadiendo datos adicionales al modelo.
Para lograr que el robot aprendiese por sí mismo, “tan solo” hubo que enseñarle demostraciones de tareas que nunca había realizado.
El robot era capaz de recopilar los datos de las imágenes y situaciones que se le estaban mostrando (agarrar distintos tipos de objeto, evitar obstáculos, etc.) para así realizar ajustes dentro del propio modelo.
Una vez se recopilaban estos datos, pasaban a formar parte del modelo refinado (Gato + los datos que ha procesado el robot para ejecutar las nuevas tareas).
De esta forma, el modelo logra aumentar su base de datos de forma constante, con el único requisito de disponer de nuevas tareas de ejemplo para seguir mejorando.
Desde DeepMind apuntan a que, cuantas más tareas nuevas aprenda, más fácil lo tendrá para aprender nuevas tareas adicionales.
El porcentaje de éxito en las mismas mejora conforme el robot va mejorando en tareas previas.
Un ciclo de aprendizaje autónomo en el que a más datos se acaben recopilando, mayor desempeño se ofrece.
Hasta ahora, si queríamos hacer que un brazo robótico funcionase, era necesario que este tuviese un modelo concreto programado para el mismo.
Basándose en Gato y con este sistema de auto-aprendizaje, el modelo es capaz de aprender a controlar distintos brazos mecánicos (con distintos patrones de movimiento, pinzas, etc.) en unas pocas horas.
Si bien la aplicación del modelo en este caso particular recae sobre un brazo robótico, el potencial de una IA capaz de aprender por sí misma es enorme (aunque es algo que llevamos refinando durante años).
Fuente: DeepMind
Desarrollado por ingenieros del MIT, el modelo podría ser una herramienta para los diseñadores que…
Ingenieros desarrollan un sensor que utiliza la energía de ciertas ondas sonoras para controlar dispositivos…
Dedicarse a la música a lo largo de la vida se asocia con una mejor…
Investigadores del MIT han desarrollado un nuevo método para la captura de carbono centrándose en…
Una investigadora de biotecnología del MIT ha podido ejecutar el icónico juego de computador Doom…
Un equipo de la Universidad Estatal de Washington ha desarrollado el robot WaterStrider, un pequeño…