Categorías: Ciencia

Utilizan inteligencia artificial para mejorar la primera foto de un agujero negro

Comparta este Artículo en:

El algoritmo fotográfico se entrenó en más de 30.000 simulaciones de agujeros negros.

Investigadores han utilizado el aprendizaje automático para reforzar una imagen publicada previamente de un agujero negro.

Como resultado, el retrato del agujero negro en el centro de la galaxia Messier 87, a más de 53 millones de años luz de la Tierra, muestra un anillo más delgado de luz y materia que rodea su centro.

Las imágenes originales fueron capturadas en 2017 por el Event Horizon Telescope (EHT), una red de radiotelescopios alrededor de la Tierra que se combinan para actuar como una herramienta de superimagen del tamaño de un planeta.

La imagen inicial parecía una “rosquilla difusa“, según lo descrito por NPR, pero los investigadores utilizaron un nuevo método llamado PRIMO para reconstruir una imagen más precisa.

PRIMO es “un novedoso algoritmo basado en el aprendizaje de diccionarios” que aprende a “recuperar imágenes de alta fidelidad incluso en presencia de escasa cobertura” entrenando en simulaciones generadas de más de 30.000 agujeros negros.

Simulaciones que se generaron para el entrenamiento del algoritmo PRIMO.

En otras palabras, utiliza datos de aprendizaje automático basados en lo que sabemos sobre las leyes físicas del universo, y específicamente sobre los agujeros negros, para producir una toma más precisa y de mejor apariencia a partir de los datos sin procesar capturados en 2017.

Los agujeros negros son regiones misteriosas y extrañas del espacio donde la gravedad es tan fuerte que nada puede escapar.

Se forman cuando las estrellas moribundas colapsan sobre sí mismas bajo su gravedad.

Como resultado, el colapso comprime la masa de la estrella en un espacio diminuto.

El límite entre el agujero negro y la masa que lo rodea se llama horizonte de eventos, un punto sin retorno donde todo lo que lo cruza (ya sea luz, materia o Matthew McConaughey) no regresará.

Lo que realmente hacemos es aprender las correlaciones entre diferentes partes de la imagen. Y lo hacemos analizando decenas de miles de imágenes de alta resolución que se crean a partir de simulaciones”, dijo la astrofísica y autora del artículo Lia Medeiros del Instituto de Estudios Avanzados en Princeton, Nueva Jersey.

Si tiene una imagen, los píxeles cercanos a cualquier píxel dado no están completamente descorrelacionados. No es que cada píxel esté haciendo cosas completamente independientes”.

Fuente: NPR

Editor PDM

Entradas recientes

Samsung lanza su alternativa a ChatGPT

Samsung ha presentado Gauss, su propio modelo de inteligencia artificial generativa. Puede procesar lenguaje natural,…

16 hours hace

El MIT descubre una nueva propiedad del grafeno

Un equipo de físicos del Instituto de Tecnología de Massachusetts (MIT) ha descubierto una propiedad…

16 hours hace

Marcapasos usa la energía de los latidos del corazón para recargar la batería

Una carcasa experimental de marcapasos sin cables puede recargar parcialmente la batería del dispositivo generando…

16 hours hace

Inteligencia artificial negoció con éxito un contrato legal sin ayuda humana

No había mucho en juego, ya que era solo una demostración en vivo, pero la…

16 hours hace

Implante cerebral permite la comunicación a partir de los pensamientos

La prótesis decodifica señales del centro del habla del cerebro para predecir qué sonido alguien…

16 hours hace

Crean un implante que ayuda a personas con Parkinson a caminar

El invento ya se probó en un paciente francés, de 63 años, al que le…

2 days hace
Click to listen highlighted text!