Categorías: Tecnología

Aplican método matemático para que los robots actúen ante situaciones imprevistas

Comparta este Artículo en:

Un nuevo método de entrenamiento de robots permite que el autómata detecte fallos de percepción en sus sensores y establezca nuevas rutinas para solucionarlos.

Se combinan diversas fuentes de información, desde imágenes, bases de datos, conceptos y situaciones, para reconocer una circunstancia anómala o imprevista y reaccionar ante ella.

El avance es obra de investigadores de la Universidad de Málaga en España.

El nuevo modelo es aplicable a muchas áreas donde los robots pueden desarrollar su trabajo, desde agricultura hasta servicios.

Especialmente en este último caso y cuando la máquina debe interactuar con personas, debe saber moverse con garantías en su entorno, anticipándose a situaciones anómalas como podría ser, por ejemplo, la aparición de una persona que se encuentre fuera del campo visual del robot.

La manera de enseñar a las máquinas, en este caso, es similar a la de un experto en cualquier materia ya que unifica distintas fuentes de experiencia y establece relaciones causa-efecto en la información que le va llegando.

Así, se dota al robot del conocimiento necesario (humano, de intuición, técnico, etc.) para abordar los problemas y situaciones.

Los investigadores han determinado cómo las decisiones del robot tienen en cuenta un mayor número de datos.

Además no los aborda de forma aislada, sino que los infiere y anticipa lo que sucederá atendiendo a las decisiones que tome.

Así, podrá definir la mejor de las opciones entre distintas variables.

El sistema utiliza las conocidas como redes bayesianas, un método de inteligencia artificial basado en el conocimiento humano.

Con él se podría explicar de una forma matemática la competencia de una persona sobre un tema.

Al mismo tiempo, utilizando las relaciones y representaciones de este marco de aprendizaje, se puede hacer que el robot no sólo trate la información sino que domine cualquier materia al mismo nivel que un experto al utilizar fuentes heterogéneas y establecer relaciones causa-efecto entre los datos.

Así, por ejemplo, un robot de servicio podría interpretar en el pasillo de un hotel que una persona pueda salir de cualquiera de las puertas o, incluso, que esté situada detrás de él a pesar de que sus sensores no la hayan captado.

En caso de que apareciera por sorpresa, el robot estaría preparado para adecuar su marcha a la circunstancia especial que se presente.

Con esta propuesta se resuelve una de las necesidades para que los robots móviles funcionen en entornos reales.

Así, si un robot utiliza un láser para orientarse en un lugar concreto, puede recibir información equivocada si se encuentra con un espejo o con cristales debido al reflejo o la refracción del rayo.

While getting cash for junk cars in Edmonton, it is logical to possess cialis sales online detailed information about supplying medications. If you tend to catch a cold too often, feel tired or take too much time to heal from cuts and wounds, these are all minor indications to a weak penile erection that is difficult to maintain an erection for a long period. cialis prescription online raindogscine.com Erection problems are more common especially in this age and day due viagra 100mg tablets to its faster work mechanism. There is a vital part of man is cialis cheap generic conjugal life.

Con el sistema, la máquina reconoce que hay una situación errónea y reconduce la información para una localización con mayores garantías.

De esta manera, el autómata integra conocimiento humano y técnico que procede del propio sensor.

Uno de los principales resultados del estudio es la demostración de que los robots detectan fallos en sus sensores cuando son sometidos a condiciones adversas y reconstruyen los datos para buscar una solución.

En el desarrollo de tareas básicas como la localización, el mapeo y la navegación es fundamental que la máquina obtenga una percepción adecuada del entorno.

Además, debe ser capaz de identificar y superar de manera inteligente y eficiente situaciones anormales”, indica a la Fundación Descubre el investigador de la Universidad de Málaga Manuel Castellano, coautor del estudio.

La propuesta ha sido evaluada en varias simulaciones ficticias y también ha sido probada en un entorno real con un robot móvil.

Los resultados obtenidos muestran que logra un mejor rendimiento y precisión en comparación con otros métodos existentes, al tiempo que mejora la robustez de todo el sistema sensorial.

Incluso en situaciones con información abstracta son capaces de captar la información exterior y relacionarla con la que ya contiene, adaptando sus decisiones a las nuevas necesidades.

El robot ‘nace sabiendo’ porque un experto le ‘transfiere’ su conocimiento, por tanto no tiene que aprender, como ocurre con otros métodos de Inteligencia Artificial”, añade el investigador.

La base del método se encuentra en las redes bayesianas que unifican la teoría de grafos y la de la probabilidad.

La parte de teoría de grafos es la que permite expresar relaciones causa-efecto entre las variables del problema.

Por otro lado, la teoría de la probabilidad aporta información sobre la incertidumbre en dichas relaciones.

La unión de todo esto es lo que representa conocimiento con todas las opciones y posibilita programarlo en la máquina.

El sistema aún tiene que mejorar los tiempos de respuesta ya que requiere de un procedimiento computacional complejo.

En una situación real el robot no puede tardar mucho en tomar una decisión alternativa.

Aunque los expertos han mejorado el algoritmo para que el proceso de deducción sea más eficiente continúan trabajando para optimizarlo.

Manuel Castellano y sus colegas exponen los detalles técnicos de su avance en la revista académica Expert Systems with Applications, bajo el título “Improving Bayesian inference efficiency for sensory anomaly detection and recovery in mobile robots”.

Fuente: Expert Systems with Applications

Editor PDM

Entradas recientes

Samsung lanza su alternativa a ChatGPT

Samsung ha presentado Gauss, su propio modelo de inteligencia artificial generativa. Puede procesar lenguaje natural,…

13 hours hace

El MIT descubre una nueva propiedad del grafeno

Un equipo de físicos del Instituto de Tecnología de Massachusetts (MIT) ha descubierto una propiedad…

13 hours hace

Marcapasos usa la energía de los latidos del corazón para recargar la batería

Una carcasa experimental de marcapasos sin cables puede recargar parcialmente la batería del dispositivo generando…

13 hours hace

Inteligencia artificial negoció con éxito un contrato legal sin ayuda humana

No había mucho en juego, ya que era solo una demostración en vivo, pero la…

14 hours hace

Implante cerebral permite la comunicación a partir de los pensamientos

La prótesis decodifica señales del centro del habla del cerebro para predecir qué sonido alguien…

14 hours hace

Crean un implante que ayuda a personas con Parkinson a caminar

El invento ya se probó en un paciente francés, de 63 años, al que le…

2 days hace
Click to listen highlighted text!