INTELIGENCIA ARTIFICIAL PARA VER MEJOR LAS IMÁGENES DE RESONANCIA MAGNÉTICA

Inteligencia artificial para ver mejor las imágenes de resonancia magnética

Comparta este Artículo en:

Usando inteligencia artificial, miembros del Grupo de Inteligencia Computacional y Análisis de Imágenes (ICAI) de la Universidad de Málaga (UMA) (España) han diseñado un nuevo método que mejora las imágenes del cerebro obtenidas por resonancia magnética.

Se trata de un nuevo modelo que permite que las imágenes pasen de baja resolución a alta, sin distorsionar las estructuras cerebrales de los pacientes, utilizando una red neuronal artificial profunda (inspirada en el funcionamiento del cerebro humano) que ‘aprende’ este proceso.

El aprendizaje profundo está basado en redes neuronales muy extensas, con lo que su capacidad para aprender lo es también, alcanzando la complejidad y abstracción de un cerebro”, explica el investigador Karl Thurnhofer, autor principal de este estudio, que señala que gracias a esta técnica se pueden realizar tareas de identificación por sí mismas, sin supervisión, de las que ni el ojo humano sería capaz.

Este avance ha sido publicado por la revista Neurocomputing, que recoge como el algoritmo desarrollado en la UMA obtiene resultados de mayor precisión en menos tiempo, con claros beneficios para los pacientes.

Sustanon 250 Sustanon – a mixture of different esters viagra in india online of testosterone. These habits may include commander viagra talking to the partner depends on the sexual health of any male. This can be a significant factor, because finasteride treatment have to be extended indefinitely. free sildenafil samples The grounds for levitra online djpaulkom.tv some sorts of impotence can be hypertension – constant spasm of blood vessels.

Hasta ahora la adquisición de imágenes cerebrales de calidad dependían del tiempo que el paciente estuviera inmovilizado en el escáner, con nuestro método el procesamiento de la imagen se hace posteriormente en el computador”, aclara Thurnhofer.

Según los expertos, los resultados permitirán a los especialistas identificar de forma más nítida y precisa patologías relacionadas con el cerebro como lesiones físicas, cánceres o trastornos del lenguaje, entre otras, ya que los detalles de las imágenes son más finos, evitando así tener que recurrir a pruebas complementarias ante diagnósticos dudosos.

Fuente: Noticias de la Ciencia

Leave a Reply

Your email address will not be published. Required fields are marked *