Categorías: Tecnología

Nuevo método para detectar deepfakes

Comparta este Artículo en:

La técnica desarrollada por un estudiante de astrofísica se centra en estudiar inconsistencias en el reflejo de la luz en los globos oculares.

La foto principal de Scarlett Johansson es real. La de la persona de la derecha no.

Es un deepfake generado por IA, y aunque está realmente lograda, ha sido posible detectar que había sido creada por una máquina.

El método para lograr esa detección es especialmente curioso.

Investigadores de la Universidad de Hull han desarrollado un novedoso método para detectar imágenes creadas por modelos de IA generativa.

La clave, aseguran, está en los ojos de esas imágenes de personas. Y en concreto, en la forma en la que reflejan la luz.

La forma de detectar esas imágenes falsas está sorprendentemente basada en herramientas usadas por los astrónomos para estudiar galaxias.

En este caso esas técnicas permiten analizar la consistencia de la luz reflejada en los globos oculares.

Según ese estudio, liderado por el estudiante Adejumoke Owolabi y tutelado por su profesor de astrofísica, el Dr. Kevin Pimbblet, estudiar los reflejos de la luz en los ojos ayuda a detectar deepfakes.

Normalmente los dos ojos reflejan de la misma forma el reflejo de las fuentes de luz, pero en imágenes creadas por IA no se toma en cuenta ese hecho, y suele haber inconsistencia en el reflejo en cada ojo.

Aunque en muchos casos es fácil ver a simple vista las diferencias en la reflexión de la luz en los ojos, la técnica astronómica ayuda a encontrar y cuantificar esas inconsistencias.

Owolabi desarrolló una técnica para detectar automáticamente esas diferencias analizando las características morfológicas de los reflejos mediante índices para comparar la similitud entre los globos oculares izquierdo y derecho.

La herramienta desarrollada hace uso del llamado coeficiente de Gini, que tradicionalmente se ha usado para medir la distribución de luz en imágenes procedentes de galaxias, y que permite evaluar la uniformidad de las reflexiones.

En el caso de esos estudios, como indicaba Pimbblet, se miden las formas de las galaxias, si son compactas, simétricas y la distribución de la luz.

La herramienta parece útil, y se suma a otras técnicas que en los últimos meses tratan de ayudarnos a detectar deepfakes.

El problema es que una vez se ha sabido que los modelos de IA generativa tienen este problema, sus creadores los modificarán para corregirlo y hacer esos deepfakes aún más difíciles de detectar.

Frente a estas técnicas, parece que la opción más interesante de momento es generar esas marcas de agua invisibles que identifiquen las imágenes generadas por IA como tales.

Hay diversos movimientos diversificados en este sentido, y queda por ver si acaban convirtiéndose en la norma.

Fuente: RAS

Editor PDM

Entradas recientes

En China patrulla un nuevo robot policía

RT-G es un robot avanzado diseñado para escenarios de confrontación. (more…)

7 hours hace

Técnica reduce el sesgo en los modelos de IA y al mismo tiempo preserva o mejora la precisión

Los modelos de aprendizaje automático pueden fallar cuando intentan hacer predicciones para individuos que estaban…

7 hours hace

Curso de humanidades en universidad norteamericana utilizará un libro de texto generado por IA

La IA ha llegado a un mercado que estaba maduro para la disrupción: los libros…

7 hours hace

IA resuelve problemas complejos de ingeniería más rápido que las supercomputadoras

Modelar cómo se deforman los automóviles en un choque, cómo responden las naves espaciales a…

7 hours hace

Diseñan celdas que generan electricidad a oscuras

Investigadores chinos han afirmado que su unidad generó una producción de electricidad estable durante 160…

7 hours hace

Mano robótica capaz de manipular objetos

Recientemente, Sanctuary AI presentó su mano robótica que ahora es capaz de manipular objetos. (more…)

3 days hace
Click to listen highlighted text!